New products, Conferences, Books, Papers, Internet of Things

Archive for June, 2014

New Book: Intelligence for Embedded Systems, a Methodological Approach

The book, written by Prof. Cesare Alippi and published by Spinger is a comprehensive, interdisciplinary treatment of intelligent systems, teaching the reader everything from metrology to cognition. It shows students and engineers how to understand basic mechanisms and design advanced applications, feeding a digital world eager for intelligent mechanisms. It also introduces researchers to ideas characterizing the transition from one generation of intelligent devices to the next.

More details in the book page

IES Symposium 2014

The “Intelligent Embedded Systems Research Group” at the Politecnico di Milano, in Milan, Italy, directed by Prof. Cesare Alippi, is organizing a symposium on “Intelligent Embedded Systems” in the context of the IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2014), a flagship international symposium of symposia sponsored by the IEEE Computational Intelligence Society (CIS) promoting all aspects of Computational Intelligence (CI).

In particular, the “Intelligent Embedded Systems” (IES) symposium will focus on recent achievements in computational intelligence towards embedded systems highlighting intelligent behaviours, including topics such as:
•Intelligence for embedded systems
•Computational intelligence for cyber-physical systems
•Intelligent fault diagnosis systems
•Intelligent solutions for Internet of Things
•Intelligent sensor networks
•Intelligent sensors and robotics
•Intelligent measurement systems
•Adaptive solutions to operate in evolving/changing environments
•Intelligent systems for real-world applications

For more information and CFP please see this and also this (pdf)

Out in the Open: The Little-Known Open Source OS That Rules the Internet of Things

Contiki-ipv6-rpl-cooja-simulationFrom Wired:

You can connect almost anything to a computer network. Light bulbs. Thermostats. Coffee makers. Even badgers. Yes, badgers.

Badgers spend a lot of time underground, which make it difficult for biologists and zoologists to track their whereabouts and activities. GPS, for example, doesn’t work well underground or in enclosed areas. But about five years ago, University of Oxford researchers Andrew Markham and Niki Trigonisolved that problem by inventing a wireless tracking system that can work underground. Their system is clever, but they didn’t do it alone. Like many other scientists, they turned to open source to avoid having to rebuild fundamental components from scratch. One building block they used is an open source operating system called Contiki.

“Contiki was a real enabler as it allowed us to do rapid prototyping and easily shift between different hardware platforms,” says Markham, now an associate professor at the University of Oxford.

Contiki isn’t nearly so well-known as Windows or OS X or even Linux, but for more than a decade, it has been the go-to operating system for hackers, academics, and companies building network-connected devices like sensors, trackers, and web-based automation systems. Developers love it because it’s lightweight, it’s free, and it’s mature. It provides a foundation for developers and entrepreneurs eager to bring us all the internet-connected gadgets the internet of things promises, without having to develop the underlying operating system those gadgets will need.

Perhaps the biggest thing Contiki has going for it is that it’s small. Really small. While Linux requires one megabyte of RAM, Contiki needs just a few kilobytes to run. Its inventor, Adam Dunkels, has managed to fit an entire operating system, including a graphical user interface, networking software, and a web browser into less than 30 kilobytes of space. That makes it much easier to run on small, low powered chips–exactly the sort of things used for connected devices–but it’s also been ported to many older systems like the Apple IIe and the Commodore 64.

Read the complete article here.

PhD Student Positions in Wireless Sensor Networks

The D3S group invites applications for two PhD positions in wireless sensor networks (WSNs). D3S is a cross-institution research group focusing on dynamic, decentralized, distributed systems.

In the context of WSNs, the D3S group has been particularly successful in bringing research results into real-world, long-term, operational deployments. Examples are the structural health monitoring of a medieval tower, and the closed-loop control of lighting in a road tunnel. The scientific results of these projects received the Best Paper Award at IPSN (both in 2009 and 2011) and the Mark Weiser Best Paper Award at PerCom 2012.

Other ongoing projects include: i) a project aimed at large-scale monitoring of the environment and the wildlife dwelling in it; ii) a cross-disciplinary project on smart spaces; iii) a follow-up project of the road tunnel deployment, investigating energy-harvesting devices and wireless actuation.

Although we emphasize real-world applications as a motivation and a concrete opportunity for the validation of our research, the latter is not limited to the immediate needs of WSN deployments. We perform a mix of curiosity-driven and application-driven research. The research challenges tackled by D3S span a broad set of topics, ranging from low-layer issues concerned with the characterization and design of communication protocols to higher-layer issues related with programming platforms and software architectures for WSNs.

New PhD students are invited to participate in ongoing projects to gain experience and insight into real systems, and to identify novel, challenging problems whose solutions break new grounds. The D3S group, and Trento at large, provide a fertile environment for high-quality research: two of our PhD students received the Best Ph.D. Thesis Award at the European Conference on Wireless Sensor Networks (EWSN) in 2009 and 2012.

More info about the positions here.